Sabtu, 19 Juli 2014

Himpunan Dan Bilangan

Himpunan (matematika)
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Venn_A_intersect_B.svg/220px-Venn_A_intersect_B.svg.png
http://bits.wikimedia.org/static-1.24wmf10/skins/common/images/magnify-clip.png
Irisan dari dua himpunan yang dinyatakan dengan diagram Venn
Teori himpunan, yang baru diciptakan pada akhir abad ke-19, sekarang merupakan bagian yang tersebar dalam pendidikan matematika yang mulai diperkenalkan bahkan sejak tingkat sekolah dasar. Teori ini merupakan bahasa untuk menjelaskan matematika modern. Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber dari mana semua matematika diturunkan.
Biasanya, nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara anggota himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu. Tabel di bawah ini menunjukkan format penulisan himpunan yang umum dipakai.
Nama
Notasi
Contoh
Himpunan
Huruf besar
S
Anggota himpunan
Huruf kecil (jika merupakan huruf)
a
Kelas
Huruf tulisan tangan
\mathcal{C}
Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.
Bilangan
Asli
Bulat
Rasional
Riil
Kompleks
Notasi
\mathbb{N}
\mathbb{Z}
\mathbb{Q}
\mathbb{R}
\mathbb{C}
Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:
Simbol
Arti
\{ \} atau \varnothing
Himpunan kosong
\cup
Operasi gabungan dua himpunan
\cap
Operasi irisan dua himpunan
\subseteq, \subset, \supseteq, \supset
Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
A^C
Komplemen
\mathcal{P}(A)
Himpunan kuasa
Himpunan dapat didefinisikan dengan dua cara, yaitu:
·         Enumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipsis (...).
B = \{ apel,\,jeruk,\,mangga,\,pisang\}
A = \{ a,\,b,\,c,\,...,\,y,\,z\}
\mathbb{N} = \{1,\,2,\,3,\,4,\,...\}
·         Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut.
O = \{ u\, |\, u \mbox{ adalah bilangan ganjil} \}
E = \{ x\, |\, x \in \mathbb{Z} \and (x \mbox{ mod } 2 = 0)\}
P = \{ p\, |\, p \mbox{ adalah orang yang pernah menjabat sebagai Presiden RI} \}Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:
A = \{ x\, |\, x \notin A\}
Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.
MACAM-MACAM HIMPUNAN
1.     Himpunan bilangan asli
Himpunan bilangan asli adalah himpunan bilangan yang anggota-anggotanya merupakan bilangan bulat positif.

N = {1,2,3,4,5,6,......}

2. Himpunan bilangan prima
Himpunan bilangan prima adalah himpunan bilangan-bilangan asli yang hanya dapat dibagi dirinya sendiri dan satu, kecuali angka 1.

P = {2,3,5,7,11,13,....}

3. Himpunan bilangan cacah
Himpunan bilangan cacah adalah himpunan bilangan yang anggota-anggotanya merupakan bilangan bulat positif digabung dengan nol.

C = {0,1,2,3,4,5,6,....}

4. Himpunan bilangan bulat
Himpunan bilangan bulat adalah himpunan bilangan yang anggota-anggotanya seluruh bilangan bulat, baik negatif, nol, dan positif.

B = {...,-3,-2,-1,0,1,2,3,...}

5. Himpunan bilangan rasional
Himpunan bilangan rasional adalah himpunan bilangan yang anggota-anggonya merupakan bilangan yang dapat dinyatakan sebagai:
p/q dimana p,q Î bulat dan q ¹ 0 atau dapat dinyatakan sebagai suatu desimal berulang.

contoh: 0,-2, 2/7, 5, 2/11, dan lain lain

6. Himpunan bilangan irasional
Himpunan bilangan irasional adalah himpunan bilangan yang anggota-anggotanya tidak dapat dinyatakan sebagai sebagai p/q atau tidak dapat dinyatakan sebagai suatu desimal berulang.

contoh: log 2, e, Ö7

7. Himpunan bilangan riil
Himpunan bilangan riil adalah himpunan yang anggota-anggotanya merupakan gabungan dari himpunan bilangan rasional dan irasional.

contoh: log 10, 5/8, -3, 0, 3

8. Himpunan bilangan imajiner
Himpunan bilangan imajiner adalah himpunan bilangan yang anggota-anggotanya merupakan i (satuan imajiner) dimana i merupakan lambang bilangan baru yang bersifat i² = -1

contoh: i, 4i, 5i

9. Himpunan bilangan kompleks
Himpunan bilangan kompleks adalah himpunan bilangan yang anggota-anggotanya (a + bi) dimana a, b Î R, i² = -1, dengan a bagian riil dan b bagian imajiner.

contoh: 2-3i, 8+2

Bilangan bulat
Simbol yang digunakan untuk melambangkanhimpunanbilangan bulat
Bilangan bulat terdiri dari bilangan cacah (0, 1, 2, 3, ...) dan negatifnya (-1, -2, -3, ...; -0 adalah sama dengan 0 sehingga tidak lagi dimasukkan secara terpisah). Bilangan bulat dapat dituliskan tanpa komponen desimal atau pecahan.
Himpunan semua bilangan bulat dalam matematika dilambangkan dengan Z (atau \mathbb{Z}), berasal dariZahlen (bahasa Jerman untuk "bilangan").
Himpunan Z tertutup di bawah operasi penambahan dan perkalian. Artinya, jumlah dan hasil kali dua bilangan bulat juga bilangan bulat. Namun berbeda dengan bilangan asliZ juga tertutup di bawah operasi pengurangan. Hasil pembagian dua bilangan bulat belum tentu bilangan bulat pula, karena ituZ tidak tertutup di bawah pembagian.
Tabel sifat-sifat operasi bilangan bulat[sunting | sunting sumber]
Penambahan
Perkalian
a + b   adalah bilangan bulat
a × b   adalah bilangan bulat
a + (b + c)  =  (a + b) + c
a × (b × c)  =  (a × b) × c
a + b  =  b + a
a × b  =  b × a
Eksistensi unsur identitas:
a + 0  =  a
a × 1  =  a
Eksistensi unsur invers:
a + (−a)  =  0
a × (b + c)  =  (a × b) + (a × c)
Tidak ada pembagi nol:
jika a × b = 0, maka a = 0 atau b = 0 (atau keduanya)
Bilangan riil
Dalam matematikabilangan riil atau bilangan real menyatakan bilangan yang bisa dituliskan dalam bentuk desimal, seperti 2,4871773339… atau 3.25678. Bilangan real meliputi bilangan rasional, seperti 42 dan −23/129, dan bilangan irasional, seperti π dan  \sqrt2 . Bilangan rasional direpresentasikan dalam bentuk desimal berakhir, sedangkan bilangan irasional memiliki representasi desimal tidak berakhir namun berulang. Bilangan riil juga dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.[1]
Definisi popular dari bilangan real meliputi klas ekivalen dari deret Cauchy rasional, irisan Dedekind, dan deret Archimides.

Bilangan riil ini berbeda dengan bilangan kompleks yang termasuk di dalamnya adalah bilangan imajiner.

Tidak ada komentar:

Posting Komentar