Definisi
Jika terdapat himpunan A dan himpunan B (A bisa sama dengan B), maka relasi R dari A ke B adalah subhimpunan dariA×B.
Relasi A×A
Sebuah relasi A×A, yaitu relasi dari himpunan A kepada A sendiri, dapat memiliki sifat-sifat berikut:- Refleksif
- Irefleksif
- Simetrik
- Anti-simetrik
- Transitif
Kita menyebut relasi R dari A kepada A sebagai relasi R dalam A.Relasi Refleksif
Sebuah relasi R dalam A disebut memiliki sifat refleksif, jika setiap elemen A berhubungan dengan dirinya.atauContoh relasi yang memiliki sifat seperti ini adalah relasi “x selalu bersama y.”, dengan x dan y adalah anggota himpunan seluruh manusia. Jelas sekali bahwa setiap orang pasti selalu bersama dengan dirinya sendiri.Relasi Irefleksif
Relasi R dalam A disebut memiliki sifat irefleksif, jika setiap elemen A tidak berhubungan dengan dirinya sendiri.atauContoh relasi irefleksif adalah relasi “x mampu mencukur rambut y dengan rapi sempurna.”, dengan x dan y adalah setiap pemotong rambut. Diandaikan bahwa setiap orang hanya dapat mencukur rambut orang lain dengan rapi sempurna, maka relasi ini adalah irefleksif, karena tidak ada seorang tukang cukur a yang mampu mencukur rambutnya sendiri.Contoh lain dalam himpunan bilangan bulat adalah, relasi < dan > adalah irefleksif.Relasi Simetrik
Relasi R dalam A disebut memiliki sifat simetrik, jika setiap pasangan anggota A berhubungan satu sama lain. Dengan kata lain, jika a terhubung dengan b, maka b juga terhubung dengan a. Jadi terdapat hubungan timbal balik.atauSebuah relasi “genap” adalah relasi simetrik, karena untuk sembarang x dan y yang kita pilih, jika memenuhi relasi tersebut, maka dengan menukarkan nilai y dan x, relasi tersebut tetap dipenuhi. Misalnya untuk pasangan (5, 3) relasi tersebut dipenuhi, dan untuk (3, 5) juga.
Relasi Anti-simetrik
Jika setiap a dan b yang terhubung hanya terhubung salah satunya saja (dengan asumsi a dan b berlainan), maka relasi macam ini disebut relasi anti-simetrik.atauDalam kebanyakan literatur biasanya ditulis sebagai kontraposisinya seperti di bawah ini. Keuntungan bentuk ini adalah tidak mengandung negasi, dan hanya mengandung satu implikasi.atauRelasibersifat anti-simetrik, karena
mengakibatkan
. Demikian juga jika ada p dan q yang terhadap mereka berlaku
dan
berarti
.
Relasi Transitif
Sebuah relasi disebut transitif jika memiliki sifat, jika a berhubungan dengan b, dan b berhubungan dengan c, maka aberhubungan dengan c secara langsung.atauSebagai contoh, relasi dua transitif. Misalnya untuk 5, 6, dan 7, berlaku 5 < 6, 6 < 7, dan 5 < 7.Relasi khusus
Relasi Ekivalen
Sebuah relasi disebut sebagai relasi ekivalen jika relasi tersebut bersifat:- Refleksif
- Simetrik, dan
- Transitif
Relasi ekuivalen memiliki hubungan erat dengan partisi, yang merupakan alasan mengapa partisi dari sebuah himpunan disebut kelas ekivalen atau kelas kesetaraan.Orde Parsial
Orde parsial adalah relasi yang bersifat:- Refleksif
- Anti-simetrik, dan
- Transitif
Tidak ada komentar:
Posting Komentar